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For any upper semicontinuous and compact-valued (usco) mapping F : X ! Y

from a metric space X without isolated points into a normed space Y ; we prove the

existence of a single-valued continuous mapping f : X ! Y such that the Hausdorff

distance between graphs GF and Gf is arbitrarily small, whenever ‘‘measure of

nonconvexity’’ of values of F admits an appropriate common upper estimate. Hence,

we prove a version of the Beer–Cellina theorem, under controlled withdrawal of

convexity of values of multifunctions. We also give conditions for such strong

approximability of star-shaped-valued upper semicontinuous (usc) multifunctions in

comparison with Beer’s result for Hausdorff continuous star-shaped-valued multi-

functions. # 2002 Elsevier Science (USA)

Key Words: multivalued mapping; approximation; selection; function of

nonconvexity; paraconvexity; Hausdorff distance.
0. INTRODUCTION

Cellina [3] has proved that an arbitrary upper semicontinuous (usc)
convex-valued mapping F : X ! Y from a metric space X into a normed
space Y is approximable in the sense that for each e > 0 the graph Gf of
some appropriate single-valued continuous mapping f : X ! Y lies in the
1 To whom all correspondence should be addressed.

1
0021-9045/02 $35.00

# 2002 Elsevier Science (USA)

All rights reserved.
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ðe� eÞ-neighborhood OeðGF Þ of the graph GF of F : Subsequently, Cellina [4]
further proved that in the case of a convex domain X and a compact-valued
mapping F ; one can find a strong e-approximation f of F ; i.e. one can
additionally assume that the symmetric inclusion GF � OeðGf Þ holds. Beer
[1] showed that the convexity assumption for domain X is in fact not
necessary: strong approximation always exists for an arbitrary metric
domain with no isolated points or equivalently, for mappings F which map
isolated points to singletons.

The following problem arises naturally: Is it possible to omit or replace
the convexity assumption for values FðxÞ of the usc mapping F? Beer [2] has
proposed a positive answer for star-shaped-valued mappings F : X ! Y :
However, such additional freedom for values of F leads to new restrictions
for the type of continuity of F : In Beer’s theorem [2], F is continuous in the
Hausdorff sense, and not just a usc mapping.

In the present paper, we prove a Beer–Cellina-type theorem (Theorem
1.1) for the so-called paraconvex-valued mappings F ; i.e. for mappings with
values FðxÞ � Y whose functions of nonconvexity are less than unity. We
derive Theorem 1.1 from three rather independent facts.

First, we show (Theorem 1.2) that the solvability of the usual
approximability problem with some additional extension-type property
always implies the solvability of strong approximation problem, whenever
we consider mappings with UVP-values, where P stands for the class of all
paracompact spaces. Second, we prove (Theorem 1.3) that bounded
paraconvex sets are UVP-subsets of a normed range space. Third, we
extend the results of [13] and show (Theorem 1.4) the necessary extension-
approximability property for paraconvex-valued mappings.

Finally, as examples we include the result that Lipschitz transverse
perturbation of a convex closed set along an additional direction yields a
paraconvex set (Proposition 1.5) and that a certain type of inside
perturbation of a closed ball also leads to a paraconvex (and simultaneously,
to star-shaped) set (Proposition 1.6). Hence, for the last class of star-shaped-
valued mappings we prove Beer’s theorem [2] for usc (in general, not
continuous) mappings.

1. MAIN RESULTS AND PRELIMINARIES

We denote by Dðm; rÞ the open ball of radius r; centered at the point
m 2 M in the metric space ðM; dÞ; and for a subset P � M; we denote by
DðP; rÞ the set

S
fDðp; rÞ j p 2 Pg: The inequality HausdðP;QÞ5r below

means that P � DðQ; rÞ and Q � DðP; rÞ: The Cartesian product X � Y of
metric spaces will usually be endowed by the max-metric, i.e. distððx1; y1Þ;
ðx2; y2ÞÞ ¼ maxfdistðx1; x2Þ; distðy1; y2Þg:
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For a nonempty subset P � Y of a normed space Y ; and for an open
r-ball Dr � Y we define the relative precision of an approximation of P by
elements of Dr as follows:

dðP;DrÞ ¼ supfdistðq;PÞ=rjq 2 convðP \ DrÞg:

For a nonempty subset P � Y of a normed space Y the function aPð�Þ of

nonconvexity of P associates the following nonnegative number to each
positive number r:

aPðrÞ ¼ supfdðP;DrÞ j Dr is an open r-ballg:

Clearly, the identical equality aPð�Þ 
 0 is equivalent to convexity of the
closed set P: By Michael [8], the closed set P is said to be q-paraconvex,
whenever the number q majorates the function aPð�Þ and P � Y is said to be
paraconvex if it is q-paraconvex, for some q51:

Recall that a multivalued mapping F : X ! Y between topological spaces
is called upper semicontinuous (resp. lower semicontinuous, lsc) if for each
open U � Y ; its small (resp. full) preimage, i.e. the set F�1ðUÞ ¼ fx 2
X j FðxÞ � Ug (resp. F�1ðUÞ ¼ fx 2 X j FðxÞ \ Ua|gÞ; is open in X :
Recall also that a single-valued mapping f : X ! Y is called a selection

(resp. an e-selection) of a multivalued mapping F : X ! Y if f ðxÞ 2 FðxÞ
(resp. distð f ðxÞ;FðxÞÞ5eÞ; for all x 2 X : We shall use the abbreviation
‘‘usco’’ for upper semicontinuous compact-valued mappings. We also say
that F : X ! Y is a paraconvex mapping if all values FðxÞ; x 2 X ; are
q-paraconvex sets, for some q 2 ½0; 1Þ:

Michael [8] proved a selection theorem for paraconvex lsc mappings of
paracompact domains (see [9] for a possible substitution of a suitable
functional majorant instead of the constant q). As a corollary, every
paraconvex set is contractible and moreover, it is an absolute retract ðAEÞ
with respect to the class P of all paracompact spaces. Note that by [12],
every metric e-neighborhood of a paraconvex set, in any uniformly convex
space Y ; is also a paraconvex set, and hence is an AE:

Theorem 1.1. Let F : X ! Y be a usco paraconvex mapping from a

metric space X without isolated points into a normed space Y : Then for every

e > 0 there exists a strong e-approximation of F ; i.e. a single-valued

continuous mapping f : X ! Y such that HausdðGF ;Gf Þ5e:

We say that a subspace P � Y is a UVX -subset of a space Y if for every
open U*P there exists an open V such that U*V*P and for every closed
subset A � X ; every continuous single-valued mapping h : A ! V admits a
continuous single-valued extension #hh : X ! U : If open neighborhoods U
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and V of a subset P � Y are replaced by its open metric e- and
d-neighborhoods, then we say that P � Y is a metric UVX -subset of Y :

Clearly, for compacta P � Y there is no difference between the notions of
metric UVX -subsets and UVX -subsets. By considering in these definitions
the cases when fX ¼ Bg are finite-dimensional balls and fAg are their
boundary spheres, we obtain the standard notion of UV1-subsets of Y (see
[7]). We say that P � Y is a UVX-subset whenever P is a UVX -subset of Y ;
for each X from the class X of topological spaces.

For the proof of Theorem 1.1 we use not only metric ðe� eÞ-
approximations, but also topological ðo� nÞ-approximations. Let o be an
open covering of a topological space X and, respectively, n an open covering
of a topological space Y : We say that f : X ! Y is an ðo� nÞ-
approximation of F : X ! Y if for each point ðx; f ðxÞÞ 2 Gf there exists a
point ðx0; y0Þ 2 GF such that the points x and x0 lie in some element of o and,
respectively, the points f ðxÞ and y0 lie in some element of n: In short,

Gf � Oo�nðGF Þ:

The term ðo� eÞ-approximation, where e > 0; means that we consider the
ðo� neÞ-approximation with ne the covering of the range metric space Y by
the family of all open ðe=2Þ-balls.

We say that a mapping F : X ! Y is ES-approximable with respect to a

subset Z � X if for all coverings o of X and n of Y ; every selection f : Z !
Y of the restriction F jZ admits an extension #ff : X ! Y which is an ðo� nÞ-
approximation of F : Here, the ES-abbreviation stands for ‘‘extension of
selections’’. For the empty subset Z this notion coincides with the usual
approximability of F : The following purely topological theorem reduces
(under some additional assumption) the problem of strong approximability
to the problem of approximability.

Theorem 1.2. Let F : X ! Y be a usco UVX -valued mapping from a

paracompact space X without isolated points into a paracompact space Y and

let F be ES-approximable with respect to each discrete closed subset Z � X :
Then F is topologically strongly approximable, i.e. for all coverings o of X

and n of Y there exists f : X ! Y such that

Gf � Oo�nðGF Þ and GF � Oo�nðGf Þ:

Theorem 1.2 and the notion of ES-approximability have natural metric
versions and in fact, for the proof of Theorem 1.1, we really use only such
metric facts. The next two theorems show that Theorem 1.2 is indeed
applicable for paraconvex mappings.
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Theorem 1.3. Every bounded paraconvex subset of a normed space is a

metric UVP-subset of the space. In particular, every paraconvex subcompac-

tum of a normed space is a UVP-subset of the space.

Theorem 1.4. Let F : X ! Y be a usc paraconvex mapping from a metric

space X into a normed space Y : Then for every closed discrete subset Z � X

and every e > 0; each selection f : Z ! Y of the restriction F jZ admits an

extension #ff : X ! Y which is an e-approximation of F :

A typical example of a paraconvex set obtained under some transversal
perturbation of a closed convex set is given by the following proposition:

Proposition 1.5. Let V be a closed convex subset of a uniformly convex

space Z; let the Cartesian product Y ¼ Z � R be endowed with the norm

jjðz; tÞjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjzjj2B þ t2

q
and let j : V ! R be a Lipschitz (with constant L)

mapping. Then there exists a number q ¼ qðLÞ 2 ½0; 1Þ independent of V and

j; such that the graph Gj of such numerical mapping is a q-paraconvex subset

of Y :

Symmetrically, the following proposition deals with the ‘‘inside’’
perturbation of convex sets. We recall that the gap between subsets B and
C of a metric space ðX ; dÞ is defined as inffdðb; cÞjb 2 B; c 2 Cg and the
cone coneðC; c0Þ generated by C and centered at c0 is defined as the set of all
sums c0 þ

Pn
i¼1 li ðci � c0Þ over all natural n; all nonnegative li and all

ci 2 C:

Proposition 1.6. Let fCaga2A be a family of closed convex subsets of a

uniformly convex space Y : Let there exist a point c0 2
T

a2A Ca and positive

numbers t and s such that all pairwise gaps between coneðCa1
; c0Þ \ St and

coneðCa2
; c0Þ \ St are greater than or equal to s; a1aa2; where St stands for

the boundary sphere of the closed ball Bt of radius t centered at the point c0:
Then the unions Bt [ ð

S
a2A CaÞ and

S
a2A Ca are paraconvex subsets of Y :

Note that Proposition 1.6 is false under the replacement of coneðCa; c0Þ by
Ca in the separation assumption. In fact, let us consider in the classical
Hilbert space l2 of square-summable sequences with standard basis fe1; e2;
e3; . . .g being the family of triangles

C2n�1 ¼ conv 0;

ffiffiffi
2

p

2
e2n þ

ffiffiffi
2

p

2
e2n�1; ene2n þ

ffiffiffi
2

p

2
e2n�1

( )
;

C2n ¼ conv 0;�
ffiffiffi
2

p

2
e2n þ

ffiffiffi
2

p

2
e2n�1;�ene2n þ

ffiffiffi
2

p

2
e2n�1

( )
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with a sequence of positive feng tending to zero. Then the star-shaped set
C ¼

S1
n¼1 Cn fails to be paraconvex, while the gap condition for the family

fCng1n¼1 with respect to the unit sphere holds.
Finally, as a simple corollary of Lemma 3.2 (see below) we formulate the

following, possibly also a new result:

Corollary 3.3. In the Stone–Weierstrass theorem on approximation of

continuous functions f by polynomials v (or by elements of some suitable

subalgebra of functions) we can always assume that the resulting polynomial v

continuously depends on f and on the precision of approximation.

2. PROOF OF THEOREM 1.2

Let two coverings o of X and n of Y be given. For every x 2 X ; the
star

StðFðxÞ; nÞ ¼
[

fV 2 n j FðxÞ \ Va|g

of the set FðxÞ with respect to the covering n constitutes an open
neighborhood of the UV X -subset FðxÞ � Y : Hence, there exists an open
set Vx � Y such that StðFðxÞ; nÞ*Vx*FðxÞ and for every closed subset
A � X every continuous single-valued mapping h : A ! Vx admits a
continuous single-valued extension #hh : X ! StðFðxÞ; nÞ: So, the family

F�1ðVxÞ ¼ fx0 2 X j Fðx0Þ � Vxg; x 2 X ;

of small preimages of the sets Vx; x 2 X ; is the open covering of the
paracompact space X :

Clearly, any ðo0 � nÞ-approximation of F is its ðo� nÞ-approximation,
whenever a covering o0 refines the covering o: So, by virtue of
paracompactness of X we can assume that o consists of the vertical
sections of some open neighborhood of the diagonal in X � X :

o ¼ fWx j x 2 Wxgx2X :

Using paracompactness of the domain X once more, we fix a locally finite
open covering O ¼ fOggg2G of X which strongly star-refines the covering
fF�1ðVxÞ \ Wxgx2X ; i.e for each index g 2 G one can pick a point xg 2 X

such that

StðOg;OÞ � F�1ðVxgÞ \ Wxg :
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By the axiom of choice, we can assume that

gag0 ) OgaOg0 :

By Cellina’s Lemma 1 from [4], we can pick a family of points fzggg2G such
that zg 2 Og; g 2 G and

ðgag0Þ ) ðzgazg0 Þ:

The local finiteness of the covering O guarantees that the set Z ¼ fzggg2G is
discrete and closed in X : For each index g 2 G we simply put

gðzgÞ 2 FðzgÞ � Y :

In this way, a continuous selection g : Z ! Y of F jZ is defined. By
assumption, the mapping F : X ! Y is ES-approximable with respect to
Z � X : Therefore, we can continuously extend g over the entire domain X

such that g : X ! Y is an ðO� nÞ-approximation of F : We reserve the
notation g for such an extension.

By construction,

ðzg 2 Og � F�1ðVxgÞÞ ) ðgðzgÞ 2 FðzgÞ � VxgÞ:

By continuity of g we can choose for each index g 2 G; a neighborhood Ng

of the point zg such that gð½Ng�Þ � Vxg and ½Ng� � Og; where ½Ng� is the
closure of Ng: By passing to subneighborhoods, we can assume that the
family f½Ng�gg2G is disjoint due to the discreteness of the set Z: Moreover,
the domain X has no isolated points and this is why we can consider
neighborhoods with nonempty boundary sets Bg ¼ ½Ng�=Ng; g 2 G: We
preserve the ðO� nÞ-approximation g : X ! Y outside the disjoint unionF

g2G½Ng� and change it inside each open set Ng; g 2 G:
To this end, following the idea of Beer [1], we choose an appropriate finite

net in the compact set FðxgÞ � Y : More precisely, we consider all nonempty
intersections of the compactum FðxgÞ with elements of the covering n: Find
a locally finite open strong star-refinement, say lg of this covering, fix a finite
subcovering of the covering lg and pick a single point at each element of this
finite subcovering. So, we construct a finite subset

Yg ¼ fyg;1; yg;2; . . . ; yg;ngg � FðxgÞ

such that for every y 2 FðxgÞ; there exists yg;i 2 Yg which lies together with y

in some element of the covering n: That is, y and yg;i are n-close. No point
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zg 2 Ng � X is isolated. Hence, there exists a finite set

Zg ¼ fzg;1; zg;2; . . . ; zg;ngg � Ng

of pairwise different points.
We now put Ag ¼ Bg t Zg; g 2 G and

hgðaÞ ¼
gðaÞ; a 2 Bg;

yg;i; a ¼ zg;i 2 Zg:

(

Clearly, hg : Ag ! Y is a continuous mapping defined on the closed subset
Ag of the paracompact space ½Ng�: Moreover, by construction, all values of
hg lie in the open neighborhood Vxg of the UVX -subset FðxgÞ � Y :
Therefore, there exists an extension #hhg of hg which continuously maps ½Ng�
into the star StðFðxgÞ; nÞ of the set FðxgÞ with respect to the covering n:
Finally, we define the continuous mapping f : X ! Y by setting

f ðxÞ ¼
gðxÞ; x =2

F
g2G½Ng�;

#hhgðxÞ; x 2 ½Ng�:

(

The mapping f coincides with g over X =
F
½Ng� and hence the graph of its

restriction lies in the ðO� nÞ-neighborhood (and, hence in the ðo� nÞ-
neighborhood) of the graph GF : For each g 2 G; the set ½Ng� � Og is the
subset of the element Wxg of the covering o and xg 2 Wxg : In the range space
Y ; we see that f ð½Ng�Þ ¼ #hhgð½Ng�Þ � StðFðxgÞ; nÞ: Hence, the graph of f over
each set ½Ng� also lies in the ðo� nÞ-neighborhood of the graph GF :

For the checking of symmetric inclusion GF � Oo�¼nðGf Þ let us pick
ðx; yÞ 2 GF : For some index g 2 G we see that x 2 Og � F�1ðVxgÞ \ Wxg : So,
the point x is o-close to each of the points fzg;1; zg;2; . . . ; zg;ngg: In the range
space Y we see that y 2 FðxÞ � Vxg � StðFðxgÞ; nÞ: So y is n-close to some
point, say y0; of the compactum FðxgÞ � Y : But y0 is n-close to some point
yg;i 2 FðxgÞ chosen above. Hence, y is StðnÞ-close to the chosen point yg;i ¼
f ðzg;iÞ: To complete the proof it suffices to perform the entire constructions
above not exactly for the given covering n of Y ; but for its arbitrary star-
refinement n0: Then fy; yg;ig � Stðy0; n0Þ � V ; for some V 2 n: Theorem 1.2 is
thus proved. ]

3. PROOFS OF THEOREMS 1.3 AND 1.4

Small perturbations in the sense of Hausdorff distance of a paraconvex set
P unfortunately yield nonparaconvex sets. To avoid such instability, we
introduce the following notion. For e50 and for q 2 ½0; 1Þ; a subset P of a
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normed space Y is said to be q-paraconvex with precision e if aPðrÞ4q; for all
r > e:

First, we state the following stability property for paraconvexity with
prescribed positive precision. For the sake of completeness we reproduce the
proof from [13].

Proposition 3.1. For every normed space Y ; every q 2 ½0; 1Þ; e > 0;
p 2 ðq; 1Þ there exists l 2 ð0; eÞ such that for every q-paraconvex with

precision e subset P � Y and for every Q � Y with HausdðP;QÞ5l; the

subset Q is p-paraconvex with precision e:

Proof. We show that one can put l ¼ e p�q
6
: Let r > e and let an open ball

Dr intersect Q: For y 2 convfy1; . . . ; yng; yi 2 Dr \ Q; one can choose zi 2
Drþl \ P with distðyi; ziÞ5l , where Drþl is the ball concentric with Dr: Due
to the convexity of l-balls there exists z 2 convfz1; . . . ; zng with distðz; yÞ5l:
So,

distðz;PÞ4aPðr þ lÞ � ðr þ lÞ4qtðr þ lÞ5q0ðr þ lÞ; q0 ¼ p þ q

2
:

Pick z0 2 P with distðz; z0Þ5q0ðr þ lÞ and find y0 2 Q with distðz0; y0Þ5l:
Then

distðy;QÞ4distðy; y0Þ4distðy; zÞ þ distðz; z0Þ þ distðz0; y0Þ52lþ q0ðr þ lÞ:

To complete the proof it suffices to verify that 2lþ q0ðr þ lÞ5pr or
lð2 þ q0Þ5ðp � q0Þr or

l5r
p � q0

2 þ q0 ¼ r
p � q

4 þ p þ q
:

Finally, we see that

l ¼ e
p � q

6
5e

p � q

4 þ p þ q
5r

p � q

4 þ p þ q
: ]

In the proof of Theorem 1.3, we use the Michael selection theorem for
convex-valued mappings into Banach spaces [11]. So, we must be more
careful with relations between normed spaces and Banach spaces.

Lemma 3.2. Let B be the completion of the normed space Y : Then there

exists a continuous mapping b : B � ð0;1Þ ! Y such that

jjy � bðy; rÞjj5r

for all ðy; rÞ 2 B � ð0;1Þ:
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As an example, we have Corollary 3.3 (see Section 1) concerning the
Stone–Weierstrass theorem.

Proof of Lemma 3.2. For a fixed r > 0; we consider the covering o of the
whole Banach space B by the open balls Dðy0; rÞ of radius r; centered at the
points y0 2 Y : Let feag be a locally finite continuous partition of unity
inscribed into the covering o: For any index a; we pick an element ya 2 Y

such that support supp ea of the continuous function ea : B ! ½0; 1� is a
subset of the ball Dðya; rÞ: In the standard manner we put

bðy; rÞ ¼
X
a

eaðyÞya 2 Y ; y 2 B:

By the local finiteness of feag and convexity of balls, we see that for some
finite number of indices

jjy � bðy; rÞjj ¼
Xn

i¼1

eaðiÞðyÞðy � yaðiÞÞ
�����

�����
�����

�����4
Xn

i¼1

eaðiÞðyÞjjðy � yaðiÞÞjj5r:

One can make such a procedure for a sequence rn ¼ 1=n; n 2 N; and then
draw the straight line segments ½bðy; rnÞ; bðy; rnþ1Þ�: To complete the proof it
suffices for r ¼ ð1 � tÞrnþ1 þ trn; t 2 ½0; 1Þ; to set

bðy; rÞ ¼ ð1 � tÞbðy; rnþ2Þ þ tbðy; rnþ1Þ:

Lemma 3.2 is thus proved. ]

Proof of Theorem 1.3. Let P be a bounded q-paraconvex subset of a
normed space Y and let e > 0 be a given radius of the metric neighborhood
DðP; eÞ of P: Clearly, P is q-paraconvex with precision e=2: Pick p 2 ðq; 1Þ:
By Proposition 3.1, one can find a positive number l ¼ lðq; e=2; pÞ such
that the inequality HausdðP;QÞ5l implies the p-paraconvexity of the set
Q with precision e=2: In particular, the closed ðl=2Þ-neighborhood
Q ¼ ClðDðP; l=2ÞÞ is p-paraconvex with precision e=2 subset of Y :

Now for every paracompact space X ; its closed subset A � X and every
continuous single-valued mapping h : A ! V ¼ DðP; l=2Þ we want to find a
continuous single-valued extension #hh : X ! U ¼ DðP; eÞ: By Lemma 3.2, it
suffices to extend the mapping h : A ! V ¼ DðP; l=2Þ to some mapping
h0 : X ! U 0 ¼ DBðP; 3e=4Þ and then set #hh ¼ b08h

0; where b0 ¼ bð�; e=4Þ;
b0 : B ! Y :

Let us consider closed convex bounded subset C ¼ ClBðconv QÞ of the
Banach space B: The continuous mapping h : A ! V ¼ DY ðP; l=2Þ ¼� Q �
C admits a continuous extension, say h0 : X ! C; by the classical Michael



ON STRONG APPROXIMATIONS 11
selection theorem. All values of such extensions are R-close to the set Q; for
some sufficiently large R > 0:

If R4e=2 then we can simply put h0 ¼ h0: Otherwise, one can use
p-paraconvexity with precision e=2 of the set Q: Namely, if

H1ðxÞ ¼
ClBðconvÞfQ \ Dðh0ðxÞ;RÞg; x =2 A;

fhðxÞg; x 2 A:

(

Then the Michael selection theorem can be applied to mapping H1: Hence,
for a selection h1 of H1 we have

distðh1ðxÞ;QÞ4aQðRÞR5p0R ¼ R1

for some p0 2 ðp; 1Þ: So, all values of h1 : X ! B are R1-close to the set Q:
If R14e=2 then we can put h0 ¼ h1: Otherwise we repeat the above

construction and find a continuous extension h2 : X ! B of h such that all
values of h2 are R2-close to the set Q; R2 ¼ ðp0Þ2

R: After some finite number
N of similar steps we obtain a continuous extension h0 ¼ hN : X ! B of h

such that all values of h0 are e=2-close to the set Q: But HausdðP;QÞ5l5
e=4; see exact answer for l from Proposition 3.1. Thus all values of h0 are
ð3e=4Þ-close to the set P; i.e. the mapping h0 really maps paracompact
domain X into the neighborhood U 0 ¼ DBðP; 3e=4Þ: Theorem 1.3 is thus
proved. ]

Proof of Theorem 1.4. Here we in fact generalize Theorem 6 from [13],
the proof of which shows that for every paraconvex-valued usc mapping F

from a metric space X into a normed space Y ; for each covering o of X and
each e > 0; there exists an ðo� eÞ-approximation, say g; of F :

We repeat the UV -technique from the proof of Theorem 1.2 for making
some surgery of g in order to obtain an ðe� eÞ-approximation #ff : X ! Y

with chosen values #ff ðzÞ ¼ f ðzÞ 2 FðzÞ; for all z from the given discrete
closed subset Z � X : In comparison with Theorem 1.2, we do not construct
an appropriate Z; but in the converse direction, we work with the
preassigned Z � X :

For each x 2 X and each e-neighborhood DðFðxÞ; eÞ; pick an open
neighborhood Vx of the set FðxÞ with respect to the UV -property of
paraconvex set FðxÞ; see Theorem 1.3. Moreover, the proof of Theorem 1.3
shows that it is possible to put Vx ¼ DðFðxÞ; 2dÞ with d ¼ eð1 � qÞ=50
independent of the variable x:

As in the proof of Theorem 1.2, fix a strong star-refinement O of the
covering

fF�1ðDðFðxÞ; dÞÞ \ Dðx; e=2Þgx2X :
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Clearly, we can additionally assume the disjointness of the stars of elements
of the given discrete closed set Z with respect to covering O: So, let g : X ! Y

be an ðO� dÞ-approximation of F : We preserve g outside the union of
disjoint stars Stðz;OÞ; z 2 Z; and change it inside these stars. Therefore, we
in fact consider the case of the single point z 2 Z: If z is an isolated point of
X then we simply put #ff ðzÞ ¼ f ðzÞ:

Let z be a nonisolated point. There exists a point #xx 2 X such that #xx is
O-close to z and gðzÞ is d-close to the set Fð #xxÞ: So, there exists another point,
say x 2 X ; such that

Stðz;OÞ � F�1ðDðFðxÞ; dÞÞ \ Dðx; e=2Þ:

Therefore,

Fð #xxÞ � FðStðz;OÞÞ � DðFðxÞ; dÞ

and

gðzÞ 2 DðFðxÞ; 2dÞ:

Hence, gðNzÞ � DðFðxÞ; 2dÞ for some neighborhood Nz � Stðz;OÞ of the
point z: Of course, we see that f ðzÞ 2 FðzÞ � DðFðxÞ; 2dÞ; too.

Clearly, we can assume that the boundary of Nz is nonempty. So, let A be
the union of the boundary of Nz and the point z: Then A is a closed subset of
ClðNzÞ: Consider the mapping, say h : A ! Y ; which coincides with g over
the boundary of Nz and which associates to z the point f ðzÞ 2 FðzÞ: By the
UV -property of the set FðxÞ and choice of d; we can extend h to some
mapping #hh : ClðNzÞ ! DðFðxÞ; eÞ: Clearly, the graph G #hh of such an extension
is ðe� eÞ-close to the graph GF : By performing such a surgery at each point
z 2 Z; we obtain the desired extension #ff of f : ]

4. PROOFS OF PROPOSITIONS 1.5 AND 1.6

For simplicity we consider only the case of inner product spaces Y : For
one-dimensional space Y ; Proposition 1.5 was proved in [9] and for finite-
dimensional spaces in [10]. Here, we generalize these results to an arbitrary
Y and, on the other hand, give a new and simpler approach in comparison
with the technically complicated proof from [10].

Proof of Proposition 1.5. Let z1; z2; . . . ; zn be any points of V and
yi ¼ ðzi;jðziÞÞ be the corresponding points on the graph Gj: We estimate
the distance distðc;GjÞ for the (unique) Chebysheff center c of the polygon
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P ¼ convfy1; y2; . . . ; yng via the Lipschitz constant L and the Chebysheff
radius R ¼ RðPÞ of this polygon.

If c lies on the boundary of P then we can pass to a smaller dimension and
argue inductively. If c is an inner point of P then all distances dðc; yiÞ are
equal to R:

Draw via the point c the ‘‘horizontal’’ hyperplane P (i.e. P is parallel to
Z). Denote by cn the point of the graph Gj; corresponding to c: If c 2 P;
then c ¼ cn 2 Gj and hence distðc;GjÞ ¼ 0: If c =2 P; then the hyperplane P
separates the point cn and one of the points y1; y2; . . . ; yn; say the point y1:

Let P0 be the two-dimensional plane which passes through the points
c; cn; y1: Consider the restriction of the function j on the intersection V \
P0: In the plane P0 draw the angle with the origin at the point y1; with the
horizontal bissectrix intersecting the vertical line ccn and with measure equal
to 2 arctanðLÞ: By the choice of the point y1 and due to the Lipschitz
property with the constant L of the function j; we see that the points c and
cn are in the same half of this angle. So, the graph Gj intersects the
perpendicular drawn from the point c to the segment ½y1; cn�: Note that
the length of such a perpendicular is less than or equal to dðc; y1Þ �
sinðarctanðLÞÞ ¼ R � sinðarctanðLÞÞ: Hence distðc;GjÞ4R � sinðarctanðLÞÞ:

For an inner point y 2 P which differs from the Chebysheff center c; the
following two cases are possible:

(a) y is close to c and then the estimate distðy;GjÞ is approximately the
same as for distðc;GjÞ;

(b) the distance dðc; yÞ is greater than some constant and then one of
the distances dðy; yiÞ will be essentially less than R:

More precisely, if in case (a) the distance dðc; yÞ is less than or equal to eR;
then distðy;GjÞ4dðc; yÞ þ distðc;GjÞ5ðp þ eÞR; where p ¼ sinðarctanðLÞÞ:
In the second case (b) we have dðc; yÞ > eR: Convexity of P implies that for
some point yi the triangle Dcyyi has an obtuse angle at the vertex y: So,

dðy;GjÞ24dðy; yiÞ24dðc; yiÞ2 � dðc; yÞ25ð1 � e2ÞR2:

Combining (a) and (b), we obtain that

distðy;GjÞ4maxfp þ e;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p
gR:

So, we can define the parameter e > 0 as the root of the equation

ðp þ xÞ2 ¼ 1 � x2

and put q ¼ p þ e 2 ½0; 1Þ: Then each point of the polygon P is qR-close to
the graph of the function j: To complete the proof it now suffices to observe
that the Chebysheff radius R of the intersection Dr \ Gj is less than or equal
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to the radius r of the ball Dr: So the function of nonconvexity of the graph
Gj majorizes by the constant q 2 ½0; 1Þ: ]

We now pass to the ‘‘hedgehog’’-shaped sets.

Proof of Proposition 1.6. First, we examine the union C ¼
S

a2A Ca: The
gap assumption for intersections coneðCa; c0Þ \ St with the convexity of all
Ca together show that all pairwise intersections Ca1

\ Ca2
are equal to fc0g:

So let P be a convex hull of a finite subset fy1; y2; . . . ; yng of the star-
shaped set C and y a point of the polygon P: We want to estimate the
distance distðy;CÞ: First, we consider the special case where the points yi

belong to distinct Ca: Then we reduce the general case to this special
situation.

(1) Let y1 2 C1 ¼ Ca1
; y2 2 C2 ¼ Ca2

; . . . ; yn 2 Cn ¼ Can
for pairwise

different indices a1; a2; . . . ; an and c0 =2 fy1; y2; . . . ; yng: Denote by R the
Chebysheff radius of P and let c be the Chebysheff center of P: As in the
proof of Proposition 1.5, it suffices to check that distðc;CÞ4pR; for some
p 2 ½0; 1Þ: Moreover, we show that p can be chosen as a function of
parameters t and s; independent of n and the choice of convex sets Ca:

Thus, let P be the cone over P with vertex c0: By the separation
hypothesis and by the convexity of the sets Ca; we see that all plane angles
/yic0yj of the ‘‘pyramid’’ P at the vertex c0 are greater than or equal to
some positive constant b: Moreover, b depends only on the ratio t=s:

Lemma 4.1. Let y 2 P: Then one of the angles /yyic0 is less than or equal

to 908� b
2:

Proof of Lemma 4.1. Let ½c0; y1� be an edge of maximal length among all
edges ½c0; yi�: Consider the flat triangle Dy1c0y2: By the maximality we see
that

/y2y1c04/y1y2c0:

But the sum of these two angles is less than or equal to 1808� b: Hence
b2 ¼ /y2y1c04908� b

2
: Analogously, we have that bk ¼ /yky1c04908�

b
2
; k ¼ 3; 4; . . . ; n: But the angle /yy1c0 is a convex combination of

b2; b3; . . . ; bn: Therefore, /yy1c04908� b
2
: Lemma 4.1 is thus proved. ]

Applying Lemma 4.1 to the case y ¼ c we see that the distance between
the Chebysheff center c of P and one of the edges ½c0; yi� is less than or
equal to dðc; yiÞ sinð908� b

2
Þ ¼ R cos b

2
: But each edge ½c0; yi� is a subset of
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the star-shaped set C: Hence, distðc;CÞ4pR; p ¼ cos b
2
: As in the proof of

Proposition 1.5 we conclude that for each point y 2 P; the inequality
distðy;CÞ4qR holds for some q 2 ½0; 1Þ; depending only on p:

(2) In the general situation, let y1; y2; . . . ; yn be arbitrary points of the
intersection Dr \ C of the set C with a ball Dr of radius r and
y ¼

Pn
i¼1 liyi 2 convfy1; y2; . . . ; yng ¼ P; li > 0;

P
li ¼ 1:

Denote by C1 ¼ Ca1
; C2 ¼ Ca2

; . . . ;Cm ¼ Cam
; 14m4n the convex sets

from the given family such that

fy1; y2; . . . ; yng � C1 [ C2 [ � � � [ Cm:

Clearly, one can choose a renumeration f1; 2; . . . ; k1; . . . ; k2; . . . ; km�1; . . . ;
km ¼ ng of indices such that fy1; y2; . . . ; yk1

g are all elements lying in
C1; fy1; y2; . . . ; yk2

g are all elements lying in C1 [ C2; . . . ; and
fy1; y2; . . . ; ykm�1

g are all elements lying in C1 [ C2 [ � � � [ Cm�1: Invoking
the convexity of the ball Dr and the set C1 we represent the item

Pk1

i¼1 liyi as
m1y0

1; where

m1 ¼
Xk1

i¼1

li > 0; y0
1 ¼

Xk1

i¼1

li

m1

yi 2 convfy1; y2; . . . ; yk1
g � Dr \ C1:

By performing such a representation for all 14j4m; we see that the point y

appears as a convex combination y ¼
Pm

j¼1 mjyj of points yj 2 Dr \ Cj; 14
j4m: So, we obtain the situation from case (1) and hence distðy;CÞ4qr; for
some suitable q 2 ½0; 1Þ: Therefore, the constant q majorizes the function
aCð�Þ of nonconvexity of the set C: Proposition is thus proved for the unionS

a2A Ca:
In the case of Bt [ ð

S
a2A CaÞ; it suffices by the proof of (2), to consider

the convex hull P ¼ convfy1; y2; . . . ; yn; yng with yi 2 Ci ¼ Cai
and yn 2

Bt=
S

Ci: Defining the conical (with respect to the point c0) ðb=3Þ-
enlargements C0

i of sets Ci; we see exactly two possibilities for the point yn:
If yn 2

S
C0

i then case (2) above works with the separation constant b=3:
Otherwise, all angles /yic0yn are greater than or equal to b=3: So case (1)
above really applies. Proposition 1.6 is thus proved. ]

5. EPILOGUE

Theorem 1.2 is a purely topological fact, whereas Theorems 1.3 and 1.4,
as well as the resulting Theorem 1.1 deal with normed geometry and use the
analytical convex techniques. Any attempt to find topological versions of
latter theorems is unsuccessful if one considers an arbitrary (even compact)
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domain of multifunctions. In fact, no approximately invertible cell-like
surjection between compacta can increase the Lebesgue dimension [6].

However, the well-known Dranishnikov example [5] shows that there
exists a cell-like surjection f of a finite-dimensional compactum onto an
infinite-dimensional compactum. Hence F ¼ f �1 gives an example of a
nonapproximable usc mapping with maximally nice (from topological point
of view) values. This is the reason, why we have been working in metric
rather than topological terms. In spite of this, we hope that the answer to the
following question is affirmative:

Question 5.1. Do there exist purely topological conditions on the
domain, the range of a multifunction, and on the family of its values,
under which strong approximability is equivalent to approximability?

A substitution of a constant q 2 ½0; 1Þ by some suitable function as a
majorant for family of functions of nonconvexity works in selection theory
(see [9,12]). However, the possibility of such a substitution is unclear for the
theory of approximations. For a technical obstruction see the proof of
Proposition 3.1: if q depends on the variable x then we cannot find a
common positive minorant for the variable l:

Question 5.2. Is it true that the statement of Theorem 1.1 (or Theorem
1.4) holds for mappings with að�Þ-paraconvex values, where a : ð0;1Þ !
½0; 1Þ is an increasing function?

Note that Beer [2] gave an example of a continuous continua-valued
mapping which is not strongly approximable. All values of this mapping are
AE-sets (subarcs of a circle), with a single exception: one of the values is this
circle.

As for a purely geometrical question we ask:

Question 5.3. Let x : ½a; b� ! R and y : ½a; b� ! R be two functions with
Lipschitz constant L: Is it true that the function of nonconvexity of the
curve ft; xðtÞ; yðtÞgt2½a;b� considered as the subset of the three-dimensional
Euclidean space has a majorant q 2 ½0; 1Þ which depends only on L?
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